New conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms

نویسندگان

  • D. D. Qin School of Mathematics and Statistics Central South University Changsha‎, ‎410083‎, ‎Hunan‎, ‎P.R‎. ‎China
  • F‎. ‎F‎. ‎ Liao‎ School of Mathematics and Statistics Central South University Changsha‎, ‎410083‎, ‎Hunan \newline Department of Mathematics‎, ‎Xiangnan University‎, ‎Chenzhou‎, ‎423000‎, ‎Hunan‎, ‎P.R‎. ‎China
  • X‎. ‎H‎. ‎ Tang School of Mathematics and Statistics Central South University Changsha‎, ‎410083‎, ‎Hunan‎, ‎P.R‎. ‎China
چکیده مقاله:

This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and establish the existence of ground state solutions with mild assumptions on $f$ and $g$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

new conditions on ground state solutions for hamiltonian elliptic systems with gradient terms

this paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + v(x)u=g(x, v), -triangle v - b(x)nabla v + v(x)v=f(x, u), end{array} right. $$ for $x in {r}^{n}$, where $v $, $b$ and $w$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. in this paper, we give a new technique to show the boundedness of cerami sequences and establi...

متن کامل

Existence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight

‎This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight‎. ‎We apply the variational methods to prove the existence of ground state solution‎.

متن کامل

Large Solutions of Semilinear Elliptic Equations with Nonlinear Gradient Terms

We show that large positive solutions exist for the equation (P±) :∆u±|∇u|q = p(x)uγ in Ω ⊆ RN(N ≥ 3) for appropriate choices of γ > 1,q > 0 in which the domain Ω is either bounded or equal to RN . The nonnegative function p is continuous and may vanish on large parts of Ω. If Ω = RN , then p must satisfy a decay condition as |x| →∞. For (P+), the decay condition is simply ∫∞ 0 tφ(t)dt <∞, wher...

متن کامل

Entire Blow-Up Solutions of Semilinear Elliptic Systems with Quadratic Gradient Terms

and Applied Analysis 3 In 8 , Lair and Wood proved that 1.5 has entire blow-up radial solutions if and only if ∫ ∞ 0 rp r dr < ∞. 1.7 They also demonstrated that for a bounded domainΩ, 1.5 has no positive blow-up solution when p is continuous in Ω. In addition, they proved that nonnegative, entire bounded solutions do not exist for 1.5 if ∫ ∞ 0 rmin |x| r p r dr ∞. 1.8 Although semilinear ellip...

متن کامل

A Remark on Entire Explosive Solutions for a Class of Elliptic System with Linear Gradient Terms

In this paper, we study the existence of positive entire large radial solutions to the nonlinear elliptic system with gradient terms { div(|∇u|p−2∇u) + |∇u| = m(|x|)f1(v)f2(u), x ∈ RN div(|∇v|q−2∇v) + |∇v| = n(|x|)g1(v)g2(u), x ∈ RN (1) The nonlinearities fi, gi (i = 1, 2) are positive and continuous, while the potentials m, n are continuous and certain growth condition. We give some simple con...

متن کامل

Analytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations

In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 41  شماره 5

صفحات  1131- 1146

تاریخ انتشار 2015-10-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023